C1	107.2 (5)	04—C4—C5	111.2 (6)
C7	113.5 (6)	O4C4C3	105.1 (6)
C8O4C4	117.6 (5)	C5-C4-C3	108.8 (6)
C1	101.3 (5)	O4-C4-C15	109.5 (5)
05—C1—O1	105.8 (6)	C5-C4-C15	111.7 (6)
O5-C1-C2	110.4 (6)	C3-C4-C15	110.2 (6)
01—C1—C2	109.2 (6)	O5—C5—C4	109.6(6)
02—C2—C1	104.3 (6)	O5-C5-C6	100.6 (5)
O2—C2—C3	116.0(6)	C4C5C6	115.1(6)
C1-C2-C3	109.3 (6)	01-C6-C5	103.3 (5)
C4C3C2	114.1 (6)	O4—C8—C9	109.2 (6)
C5-05-C101	-43.2 (7)	C2-C3-C4-C5	-41.5 (8)
C5-05-C1-C2	74.8 (7)	C2-C3-C4-C15	-164.3 (6)
C6-01-C1-05	22.5 (8)	C1O5C5C4	-76.4 (7)
C6-01-C1-C2	-96.3 (7)	C1—O5—C5—C6	45.2 (7)
C7O2C1	-177.2 (5)	04-C4-C5-05	-55.1 (7)
C7—O2—C2—C3	-57.1 (8)	C3—C4—C5—O5	60.2 (7)
O5-C1-C2-O2	66.6 (7)	C15—C4—C5—O5	- 177.9 (5)
01-C1-C2-02	-177.5 (5)	O4—C4—C5—C6	- 167.6 (5)
05-C1-C2-C3	-58.0(7)	C3—C4—C5—C6	-52.3 (7)
01-C1-C2-C3	57.9 (7)	C1	6.3 (7)
O2—C2—C3—C4	-77.5 (8)	05-C5-C6-01	-31.8(7)
C1—C2—C3—C4	40.0 (8)	C4—C5—C6—O1	85.9 (7)
C8—O4—C4—C5	-61.0(7)	C4O4C8C9	-171.8 (5)
C8O4C4C3	-178.6 (5)	O4-C8-C9-C10	26.2 (9)
C2—C3—C4—O4	77.8 (7)	04—C8—C9—C14	- 152.5 (6)

For both compounds, data collection: R3m Software (Siemens, 1983); cell refinement: R3m Software; data reduction: SHELXTL (Sheldrick, 1983); program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CIFTAB (Sheldrick, 1993).

Lists of structure factors, torsion angles, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: TA1065). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Blattner, R., Furneaux, R. H., Mason, J. M. & Tyler, P. C. (1991). Pestic. Sci. 31, 419-435.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Furneaux, R. H., Henzell, R. F. & Tyler, P. C. (1991). US Patent 5 (147) 518
- Furneaux, R. H., Mason, J. M. & Tyler, P. C. (1995). Unpublished results.
- Furneaux, R. H., Mason, J. M., Tyler, P. C., Blattner, R., Lawson, K. R., Chrystal, E. J. T., Mitchell, G. & Pilkington, B. L. (1989). European Patent Application 0 302 599.
- Gainsford, G. J., Furneaux, R. H., Mason, J. M. & Tyler, P. C. (1995). Acta Cryst. C51, 2418–2421.
- Jeffrey, G. A., Pople, J. A. & Radom, L. (1974). Carbohydr. Res. 38, 81-95.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1983). SHELXTL User's Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1983). R3m Software. Version 4.11. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 1277-1280

Pyrrolo-Annellated Carbazoles as Potential Antitumour-Active Compounds: Dimethyl 4-Methoxy-9-methyl-9*H*-carbazole-1,2dicarboxylate and 5-Hydroxy-2-phenyl-10-methyl-1,2,3,10-tetrahydropyrrolo[3,4*a*]carbazole-1,3-dione Methanol Solvate

DIETER SCHOLLMEYER,^a Gudrun Fischer^b and Ulf Pindur^b

^aInstitut für Organische Chemie der Universität Mainz, Saarstrasse 21, 55099 Mainz, Germany, and ^bInstitut für Pharmazie der Universität Mainz, Saarstrasse 21, 55099 Mainz, Germany. E-mail: scholli@uacdr0.chemie. uni-mainz.de

(Received 28 September 1995; accepted 29 November 1995)

Abstract

The structures of the title compounds, $C_{18}H_{17}NO_5$ and $C_{21}H_{14}N_2O_3.CH_4O$, were determined. The crystal structure of the first shows significant variations between its two independent molecules; that of the second is characterized by hydrogen bonds to the co-crystallized methanol.

Comment

Selectively functionalized and annellated carbazoles as well as structurally related alkaloids are interesting target compounds for the development of antitumour and antibiotically active drugs (Chakraborty & Roy, 1991; Gribble, 1990; Pindur, 1987; Kansal & Poitier, 1986; Poitier, 1992). Due to the planar chromophore of the carbazoles, the pharmacological activity is based, first of all, on complex formation with human B-DNA (Gribble, 1990). In recent years we have synthesized a variety of functionalized carbazole and annellated carbazole derivatives in order to obtain more details on structure-activity relationships (Pindur, Haber & Erfanian-Abdoust, 1992; Pindur, Pfeuffer, Eitel, Rogge & Haber, 1991; Pindur, 1995). In this context, current molecular-modelling studies of carbazole-DNA interactions were performed (Pindur, Haber & Erfanian-Abdoust, 1992; Dräger, Haber, Erfanian-Abdoust, Pindur & Sattler, 1993; Sattler, 1994; Rehn, 1995) on the basis of molecular mechanics, molecular dynamics and quantum chemistry calculations. To obtain detailed geometrical information on the molecules interacting with DNA, X-ray analyses of the potential drugs are necessary. As a continuation of our investigations in this field, we report the crystal structures of the title compounds, (1) and (2), which will be helpful in designing new antitumour-active drugs.

Crystals of (1) have two independent molecules in the unit cell (Fig. 1). The methyl ester group connected to C21 (IUPAC numbering: C1) of the independent molecule B (Fig. 1) is disordered with a population ratio of 40:60 by rotating the group about C21—C33 by 180°. Significant deviations (>3 σ) in bond lengths and bond angles between the independent molecules can be found, especially in the methyl ester groups. The 14π carbazole system of (1) is planar.

Crystals of compound (2) contain one methanol molecule per carbazole derivative (Fig. 2), forming

Molecule A

Fig. 1. ORTEPII plot (Johnson, 1976) of (1). 50% probability displacement ellipsoids; H-atom radii arbitrary.

Fig. 2. ORTEPII plot (Johnson, 1976) of (2). 50% probability displacement ellipsoids; H-atom radii arbitrary.

Fig. 3. Part of the crystal packing (Motherwell & Clegg, 1978) of (2) viewed down the c axis. The zigzag arrangement of the hydrogen bonding is indicated by broken lines.

typical hydrogen bonds (Brown, 1976) as shown in Fig. 3 $[O2 \cdots H4OM \ 1.736(4), O4M \cdots O2 \ 2.807(4) Å,$ O4M—H4OM···O2 168.3 (3)°; O4M···H3O 1.702 (4), O4*M*···O3 2.645 (4) Å, O4*M*—H3O···O3 165.7 (3)°]. Compound (2) is planar in the pyrrolo-carbazole system; the dihedral angle between its best plane and that of the benzene partial structure is 54.02°.

Experimental

Compound (1) is readily available from a Diels-Alder reaction of in situ generated 1-(N-methylindolyl)-1-methoxyethene and dimethyl acetylene dicarboxylate followed by spontaneous dehydrogenation (Pindur, Rogge, Rehn, Massa & Peschel, 1994). The [a]-annellated carbazole of compound (2) is readily available from in situ generated 1-(N-trimethylsilylindol-3yl)-1-(trimethylsilyloxy)ethene and N-phenylmaleimide; the [4+2] cycloadduct primarily formed is dehydrogenated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (Rogge, Fischer, Schollmeyer & Pindur, 1996). Crystals of (1) were obtained from chloroform by slow evaporation; crystals of (2) by slow diffusion of water in a water-methanol solution (1:10).

Compound (1)

Crystal data

 $\theta_{\rm max} = 70^{\circ}$

$C_{18}H_{17}NO_5$	Cu $K\alpha$ radiation
$M_r = 327.34$	$\lambda = 1.5418 \text{ Å}$
Monoclinic	Cell parameters from 75
$P2_1/c$	reflections
a = 6.8415(3) Å	$\theta = 60-70^{\circ}$
b = 24.411(3) Å	$\mu = 0.734 \text{ mm}^{-1}$
c = 19.377(1) Å	T = 298 (2) K
$\beta = 95.888(6)^{\circ}$	Colourless
$V = 3219.1(3) Å^3$	$0.8 \times 0.19 \times 0.06$ mm
Z = 8	Rectangular prism
$D_x = 1.350 \text{ Mg m}^{-3}$	
Data collection	
Enraf–Nonius CAD-4	$h = 0 \rightarrow 9$
diffractometer	$k = 0 \rightarrow 30$
$\omega/2\theta$ scans	$l = -23 \rightarrow 23$
Absorption correction:	3 standard reflections
none	frequency: 66.7 min
6818 measured reflections	intensity decay: 5%
5236 independent reflections	[corrected with a
4182 observed reflections	cubic spline function
$[I > 2\sigma(I)]$	(CORINC; Dräger &
$R_{\rm int} = 0.031$	Gattow, 1971)]

Refinement	
Refinement on F	Extinction correction:
R = 0.06	SHELX76 (Sheldrick,
wR = 0.07	1976)
S = 6.88	Extinction coefficient:
4182 reflections	0.0030 (6)
434 parameters	Atomic scattering factors
H atoms riding with fixed	from International Tables
U _{iso}	for Crystallography (1992,
$w = 1/[\sigma^2(F_o) + 0.0002F_o^2]$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = 0.001$	6.1.1.4)
$\Delta \rho_{\rm max} = 0.387 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.278 \ {\rm e} \ {\rm \AA}^{-3}$	

Table	1.	Fractional	atomic	coordinates	and	equivalent
i.	sot	ropic displa	acement	parameters ($(\mathring{A}^2)f$	for (1)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

	x	y	z	U_{co}
CI	0.4334 (5)	0.6870(1)	0.8113(2)	0.060(1)
C2	0.2739 (5)	0.7208(1)	0.7910(1)	0.060(1)
C3	0.2328 (5)	0.7388(1)	0.7224(1)	0.058 (1)
C4	0.3505 (4)	0.7234(1)	0.6722(1)	0.0527 (10)
C4A	0.5155 (4)	0.6904(1)	0.6914(1)	0.0526 (10)
C4B	0.6659 (5)	0.6690(1)	0.6524(2)	0.0520(10)
C5	0.7029(5)	0.6715(1)	().5822(2)	0.058(1)
C6	0.8624 (6)	0.6438(2)	0.5629(2)	0.087(2)
C7	0.9879 (6)	0.6147(2)	0.6121(3)	0.007(2)
C8	0.9576 (6)	0.6130(1)	(1.6802(2))	0.090(2)
C8A	0 7922 (5)	0.6393(1)	0.0002(2)	0.091(2)
N9	0.7260(4)	0.6318(1)	(1.7653(2))	0.007(1)
CI5	0.8286(7)	0.0410(1) 0.6164(2)	0.7055(2) 0.8268(2)	0.071(1)
C9A	0.5554 (5)	0.6732(1)	0.0200(2)	0.101(2)
01	0.3337(3)	0.73728 (0)	0.7003(2)	0.059(1)
C10	0.5222(5) 0.1528(5)	0.7697(1)	0.5815(2)	0.0034(8)
CII	0.1320(5)	0.7077(1)	0.3813(2)	0.071(1)
$\frac{1}{02}$	0.1598(5)	(0.7378(2))	(1.6440(2))	0.070(1)
03	0.1370(3)	0.7235(2)	0.9020(1)	0.137(2)
C12	-0.1305(6)	0.7713(1) 0.7024(2)	0.8200(1)	0.092(1)
CI3	0.1505 (0)	0.7927(2)	0.8070(2)	0.090(2)
04	0.5754(4)	0.0030(2)	0.0029(2)	0.070(1)
05	0.3734 (4)	0.0950(1)	0.9200(1)	0.092(1)
C14	0.4003(0)	0.0199(1)	0.8985(1)	0.124 (2)
C21	() 1575 (4)	0.0727(2)	0.9955(2)	0.141 (3)
C21	0.1373(4)	0.9322 (1)	0.7003(1)	0.0516(10)
C22	0.3130(4)	0.9013(1)	0.7327(2)	0.0534 (10)
C23	0.3305 (4)	0.8900(1)	0.8042(2)	0.056(1)
C24	0.1946 (5)	0.9098 (1)	0.8451 (2)	0.057(1)
C24A C24B	0.0370(4)	0.9408(1)	0.8148(2)	0.055(1)
C24B	-0.1263 (5)	0.9667(1)	0.8431 (2)	0.065(1)
C25	-0.1802 (6)	0.9721(1)	0.9107 (2)	0.081(1)
C26	-0.3518(7)	1.0017 (2)	0.9183(3)	0.105 (2)
C27	-0.4610(6)	1.0245 (2)	0.8621 (3)	0.107 (2)
C28	-0.4103 (5)	1.0204 (1)	0.7961 (3)	0.090(2)
C28A	-0.2394 (5)	0.9910(1)	0.7868 (2)	0.069(1)
N29	-0.1523 (4)	0.9818(1)	0.7261 (2)	0.0657 (10)
035	-0.2311 (5)	1.0006(1)	0.6586(2)	0.085 (1)
C29A	0.0186 (4)	0.9513(1)	0.7430(2)	0.054 (1)
021	0.1978 (4)	0.9021(1)	0.9146(1)	0.0744 (9)
C30	0.3578(6)	0.8716(2)	0.9485 (2)	0.083 (1)
C31	0.4631 (5)	0.8801(1)	0.6891 (2)	0.056(1)
022	0.4616(4)	0.8873(1)	0.6288(1)	0.092 (1)
023	0.6044 (3)	0.8516(1)	0.7254 (1)	0.0806 (9)
C32	0.7522 (5)	0.8285 (2)	0.6862 (2)	0.085(1)
C33	0.1470 (5)	0.9454(1)	0.6244 (2)	0.063(1)
024	0.2304 (5)	0.9880(1)	0.6068(1)	0.098 (1)
025	0.0532 (4)	0.9123 (1)	0.5829(1)	0.0813 (9)
C34†	0.068 (1)	0.9176 (3)	0.5097 (3)	0.103 (3)
C34A†	0.282 (2)	0.9966 (5)	0.5385 (5)	0.120(5)

† Rotationally disordered (see Comment).

C1C13	1.495 (5)	C21—C33	1.499 (4)
C2-C11	1.486 (5)	C22—C31	1.487 (4)
C4 - OI	1.356 (3)	C24	1.358 (4)
C8A = C4B	1.430 (4)	$C_{24A} = C_{24B}$	1.439 (4)
N9-C15	1.458 (5)	N29-C35	1.390(3)
N9C9A	1.392 (4)	N29—C29A	1.395 (4)
O1-C10	1.435 (4)	O21—C30	1.427 (5)
C1102	1.173 (4)	C31O22	1.182 (4)
C1103	1.318 (5)	C31O23	1.333 (4)
03-C12	1.443 (5)	O23—C32	1.441 (4)
C1304 C1305	1.309 (5)	C33	1.251 (4)
04 - 014	1.193 (5)	0.33 - 0.25	1.268 (4)
C21-C29A	1.403(4)	024-034	1.42(1)
	11.05 (1)	025 034	1.4.00(0)
C13 - C1 - C2	121.9 (3)	C33—C21—C22	120.9 (2)
$C_{11} = C_{2} = C_{11}$	118.5 (3)	C31—C22—C21	118.0 (2)
N9 - C84 - C4B	123.0(2)	$N_{29} = C_{29A} = C_{21}$	129.9 (2)
N9-C8A-C8	128 5 (3)	N29 - C284 - C24B	123.0(2)
C15—N9—C8A	123.5 (3)	N29-C28A-C28	129 () (3)
C9A—N9—C8A	108.1 (3)	C35—N29—C28A	124.4 (3)
C9AN9C15	128.4 (3)	C29A-N29-C28A	108.0(2)
N9—C9A—C1	129.8 (2)	N29—C29A—C24A	108.5 (2)
N9—C9A—C4A	108.2 (3)	C30	117.6 (2)
C10-01-C4	117.8 (2)	O22-C31-C22	125.0 (3)
02-C11-C2	125.1 (3)	O23—C31—C22	112.8 (2)
03-C11-C2	113.6 (3)	C32	115.9 (2)
C12 - 03 - C11	119.0 (3)	O24—C33—C21	118.0(2)
04 - (13 - (1))	113.0(3)	025-C33-C21	117.1 (2)
05 - 013 - 01	123.4 (3)	$C_{34A} = 0_{24} = C_{33}$	122.8 (5)
$C_{14} - C_{13} - C_{13}$	123.0(3)	$C_{34} = 0_{23} = C_{33}$	119.1(3) 127.6(2)
	115.7(5)	02//-112/-035	127.0(2)
C2-C1-C13-05	92.4 (4)	C1C2C11O2	-3.1 (4)
C9A - C1 - C13 - O4	93.5 (4)	C22—C21—C33—O24	- 88.8 (4)
$C_3 = C_2 = C_1 = -O_3$	-2.8(4)	$C_{23} - C_{22} - C_{31} - O_{22}$	180.0 (3)
$C_{3} - C_{4} - 01 - C_{10}$	-1.5(3)	$C_{29A} = C_{21} = C_{33} = O_{25}$	-90.9(3)
$C_2 = C_3 = C_4 = 01$	-01(3)	$C_{21} = C_{22} = C_{31} = 0_{23}$	179.7 (3)
$C_2 - C_{11} - O_3 - C_{12}$	-178.0(4)	$C_{22} = C_{23} = C_{24} = O_{21}$	-1/9.2 (3)
C1-C13O4C14	-179.4(4)	$C_{29A} - C_{21} - C_{33} - O_{24}$	890(4)
O5-C13-O4-C14	-2.2 (5)	025-C33-024-C34A	- 19.7 (7)
Compound (2)			
Crystal data			
		a u .	
$C_{21}H_{14}N_2O_3.CH_4O$		Cu $K\alpha$ radiation	
$M_r = 374.38$		$\lambda = 1.5418 \text{ A}$	
Orthorhombic		Cell parameters from	1 60
$Pca2_1$		reflections	
a = 22.028 (2) Å		$\theta = 60 - 70^{\circ}$	
b = 11.698(1) Å		$u = 0.786 \text{ mm}^{-1}$	
c = 7.0116 (3) Å		$\mu = 0.780$ mm	
U = 1.0110(3) A		T = 295 (2) K	
$V = 1800.8 (2) A^{\circ}$		Rectangular prism	
Z = 4		$0.58 \times 0.10 \times 0.06$	mm
$D_x = 1.376 \text{ Mg m}^-$	3	Pale yellow	
D			
Data collection			
Enraf-Nonius CAD	-4	$h = -26 \rightarrow 26$	
diffractometer		$k = -14 \rightarrow 14$	
$\omega/2\theta$ scans		$l = -8 \rightarrow 8$	
Absorption correction	on:	3 standard reflections	:
none		frequency: 66.7	, in
3683 managered -	ations	internet. J	111
2296 independent	A anti-	mensity decay: 5%	0
5580 independent re	enections	[corrected with	a
2466 observed reflect	ctions	cubic spline fun	ction
$[I > 2\sigma(I)]$			
		(CORINC; Dräg	er &
$R_{\rm int} = 0.036$		(<i>CORINC</i> ; Dräg Gattow, 1971)]	er &

Table 2. Selected geometric parameters (\mathring{A}, \circ) for (1)

1280)
------	---

n c

Kejinement	
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$
$R[F^2 > 2\sigma(F^2)] = 0.0628$	$\Delta \rho_{\rm max} = 0.172 \ {\rm e} \ {\rm A}^{-3}$
$wR(F^2) = 0.1852$	$\Delta \rho_{\rm min} = -0.225 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.009	Extinction correction: none
3386 reflections	Atomic scattering factors
267 parameters	from International Tables
Only H-atom U's refined	for Crystallography (1992,
$w = 1/[\sigma^2(F_{\rho}^2) + (0.1012P)^2]$	Vol. C, Tables 4.2.6.8 and
+ 0.6799 <i>P</i>]	6.1.1.4)
where $P = (F_o^2 + 2F_c^2)/3$	

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^*$	$\mathbf{a}_i \cdot \mathbf{a}_j$.
---	-------------------------------------

	x	v	5	U_{eq}
C1	0.2668 (2)	0.6717(3)	0.1634 (6)	0.0502 (10)
N2	0.32849(14)	0.6482 (3)	0.1852 (5)	0.0507 (8)
C3	0.3383 (2)	0.5302 (3)	0.2154 (6)	0.0475 (9)
C3A	0.2777 (2)	0.4765 (3)	0.2183 (6)	0.0454 (8)
C3B	0.2556 (2)	0.3651 (3)	0.2452 (6)	0.0455 (8)
N4	0.2844 (2)	0.2621 (3)	().2776 (5)	0.0520(8)
C4A	0.2396 (2)	0.1783 (3)	0.2976 (6)	0.0535 (10)
C5	0.2477 (3)	0.0608 (4)	0.3339 (8)	0.0675 (13)
C6	0.1962 (3)	-0.0027 (4)	0.3484 (8)	0.0739 (14)
C7	0.1386 (3)	0.0414 (4)	0.3276 (8)	0.0714(14)
C8	0.1304 (2)	0.1577 (4)	0.2905 (7)	0.0606(11)
C8A	0.1824 (2)	0.2259 (4)	0.2770 (6)	0.0498 (9)
C8B	0.1920(2)	0.3466 (3)	0.2445 (6)	().0452 (9)
C9	0,1506(2)	0.4355 (3)	0.2138 (6)	0.0465 (9)
C10	0.1727 (2)	0.5459 (3)	0.1854 (6)	0.0473 (9)
C10A	0.2344 (2)	0.5621 (3)	0.1884 (5)	0.0433 (8)
C11	0.3752 (2)	0.7327 (4)	0.1871 (7)	0.0535 (10)
C12	0.3695 (2)	0.8239 (4)	0.3129 (7)	0.0612 (12)
C13	0.4146 (2)	0.9069 (4)	0.3151 (10)	0.0754 (15)
C14	0.4645 (2)	0.8986 (5)	().1988 (11)	0.080(2)
C15	0.4701 (2)	().8080 (6)	0.0764 (10)	0.080(2)
C16	0.4247 (2)	0.7236 (5)	0.0704 (8)	0.0683 (13)
C17	0.3487 (2)	0.2391 (4)	0.2805 (7)	().0600 (11)
01	0.24569 (14)	0.7646 (2)	0.1270 (6)	0.0657 (9)
O2	0.38806 (12)	0.4896 (2)	0.2365 (5)	0.0627 (8)
03	0.09157 (12)	0.4080(3)	0.2115 (5)	0.0633 (8)
O4 <i>M</i>	0.01008 (14)	0.5736 (3)	0.1898 (8)	0.0895 (13)
C1M	0.0079 (3)	0.6676 (5)	0.0694 (9)	0.085(2)

Table 4. Selected geometric parameters (Å, °) for (2)

C1—O1	1.210(5)	C3BN4	1.380 (5)
C1—N2	1.395 (5)	C3B—C8B	1.416 (5)
C1-C10A	1.477 (5)	N4—C4A	1.397 (6)
N2-C3	1.413 (5)	N4C17	1.442 (5)
N2-C11	1.428 (5)	C4A—C8A	1.385 (6)
C3—O2	1.204 (4)	C8AC8B	1.446 (6)
C3—C3A	1.474 (5)	C8BC9	1.401 (5)
C3A—C10A	1.399 (5)	C9O.3	1.339 (4)
C3A—C3B	1.405 (5)	C10-C10A	1.373 (5)
01-C1-N2	125.1 (4)	N4-C3B-C3A	132.3 (4)
O1-C1-C10A	128.3 (3)	N4—C3B—C8B	108.7 (3)
N2-C1-C10A	106.6 (3)	C3BN4C4A	107.7 (3)
C1-N2-C3	111.0 (3)	C3BN4C17	128.1 (4)
C1-N2-C11	124.5 (3)	C4A—N4—C17	124.1 (3)
C3-N2-C11	124.4 (3)	C8A-C4A-N4	110.5 (3)
O2-C3-N2	122.9 (4)	N4 C4A C5	127.8 (4)
O2-C3-C3A	130.9 (4)	O3-C9-C10	124.0(3)
N2-C3-C3A	106.3 (3)	C16C11N2	121.0 (4)
C10A-C1-N2-C3	2.2 (5)	C3B—N4—C4A—C5	- 179.4 (5)
C10A-C1-N2-C11	-174.7 (4)	C17—N4—C4A—C5	3.9 (7)
C1-N2-C3-C3A	-1.8(4)	N4—C4A—C8A—C8	179.7 (4)
C11—N2—C3—C3A	175.1 (4)	N4-C4A-C8A-C8B	-0.7 (4)
O2—C3—C3A—C3B	0.2 (8)	N4—C3B—C8B—C9	-179.6 (4)
N2-C3-C3A-C3B	-178.5 (5)	C3B-C8B-C9-O3	178.4 (4)
C3C3AC3BN4	-1.0 (8)	O3-C9-C10-C10A	-179.0 (4)

177.8 (4)	O1-C1-C10A-C10	-4.0(7)
178.8 (4)	N2-C1-C10A-C10	177.5 (4)
-4.6(7)	C1-N2-C11-C12	52.9 (6)
0.4 (5)	C3-N2-C11-C12	-123.5 (4)
	177.8 (4) 178.8 (4) 4.6 (7) 0.4 (5)	177.8 (4) 01C1C10AC10 178.8 (4) N2C1C10AC10 -4.6 (7) C1N2C11C12 0.4 (5) C3N2C11C12

For both compounds, data collection: *CAD-4 Software* (Enraf-Nonius, 1989); cell refinement: *CELSIUS* (Svenson, 1974); data reduction: *CORINC* (Dräger & Gattow, 1971); program(s) used to solve structures: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structures: *SHELX76* (Sheldrick, 1976) for (1); *SHELXL93* (Sheldrick, 1993) for (2).

We wish to thank the Deutsche Forschungsgemeinschaft, Bonn, for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1206). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

References

Brown, I. D. (1976). Acta Cryst. A32, 24-31.

- Chakraborty, D. P. & Roy, S. (1991). Prog. Chem. Organ. Nat. Produkts, Vol. 57, Carbazole Alkaloids III, edited by Z. Walter, G. W. Kirby, W. Steglich & Ch. Tamm, pp. 93–99. Wien, New York: Springer Verlag.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761. (1994 revised version by L. Wiehl & D. Schollmeyer. Universität Mainz, Germany.)
- Dräger, M., Haber, M., Erfanian-Abdoust, H., Pindur, U. & Sattler, K. (1993). Monatsh. Chem. 124, 559-576.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gribble, G. W. (1990). The Alkaloids. Vol. 39. The Ellipticine Alkaloids, edited by A. Brossi, pp. 239–343. New York, London: Academic Press.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kansal, V. R. & Poitier, P. (1986). Tetrahedron, 42, 2389-2408.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
- Pindur, U. (1987). Pharm. Unserer Zeit, 16, 47-52.
- Pindur, U. (1995). Advances in Nitrogen Heterocycles. Vol. 1. Cycloadditions with Indole Derivatives, edited by C. J. Moody, pp. 122– 170. Greenwhich: JAI Press.
- Pindur, U., Haber, M. & Erfanian-Abdoust, H. (1992). *Heterocycles*, 34, 781-790.
- Pindur, U., Haber, M. & Sattler, K. (1992). Pharm. Unserer Zeit. 21, 21-36.
- Pindur, U., Pfeuffer, L., Eitel, M., Rogge, M. & Haber, M. (1991). Monatsh. Chem. 122, 291-298.
- Pindur, U., Rogge, M., Rehn, C., Massa, W. & Peschel, B. (1994). J. Heterocycl. Chem. 31, 981–988.
- Poitier, P. (1992). Chem. Soc. Rev. 21, 113-119.
- Rehn, C. (1995). Thesis, University of Mainz. Germany.
- Rogge, M., Fischer, G., Schollmeyer, D. & Pindur, U. (1996). Monatsh. Chem. 127, 97-102.
- Sattler, K. (1994). Thesis, University of Mainz, Germany.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Reinement of Crystal Structures. University of Göttingen, Germany.
- Svenson, C. (1974). CELSIUS. Program for Refinement of Lattice Parameters. Lund, Sweden.